Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMJ ; 379: e071594, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36288813

RESUMO

OBJECTIVE: To quantify the comparative risk of thrombosis with thrombocytopenia syndrome or thromboembolic events associated with use of adenovirus based covid-19 vaccines versus mRNA based covid-19 vaccines. DESIGN: International network cohort study. SETTING: Routinely collected health data from contributing datasets in France, Germany, the Netherlands, Spain, the UK, and the US. PARTICIPANTS: Adults (age ≥18 years) registered at any contributing database and who received at least one dose of a covid-19 vaccine (ChAdOx1-S (Oxford-AstraZeneca), BNT162b2 (Pfizer-BioNTech), mRNA-1273 (Moderna), or Ad26.COV2.S (Janssen/Johnson & Johnson)), from December 2020 to mid-2021. MAIN OUTCOME MEASURES: Thrombosis with thrombocytopenia syndrome or venous or arterial thromboembolic events within the 28 days after covid-19 vaccination. Incidence rate ratios were estimated after propensity scores matching and were calibrated using negative control outcomes. Estimates specific to the database were pooled by use of random effects meta-analyses. RESULTS: Overall, 1 332 719 of 3 829 822 first dose ChAdOx1-S recipients were matched to 2 124 339 of 2 149 679 BNT162b2 recipients from Germany and the UK. Additionally, 762 517 of 772 678 people receiving Ad26.COV2.S were matched to 2 851 976 of 7 606 693 receiving BNT162b2 in Germany, Spain, and the US. All 628 164 Ad26.COV2.S recipients from the US were matched to 2 230 157 of 3 923 371 mRNA-1273 recipients. A total of 862 thrombocytopenia events were observed in the matched first dose ChAdOx1-S recipients from Germany and the UK, and 520 events after a first dose of BNT162b2. Comparing ChAdOx1-S with a first dose of BNT162b2 revealed an increased risk of thrombocytopenia (pooled calibrated incidence rate ratio 1.33 (95% confidence interval 1.18 to 1.50) and calibrated incidence rate difference of 1.18 (0.57 to 1.8) per 1000 person years). Additionally, a pooled calibrated incidence rate ratio of 2.26 (0.93 to 5.52) for venous thrombosis with thrombocytopenia syndrome was seen with Ad26.COV2.S compared with BNT162b2. CONCLUSIONS: In this multinational study, a pooled 30% increased risk of thrombocytopenia after a first dose of the ChAdOx1-S vaccine was observed, as was a trend towards an increased risk of venous thrombosis with thrombocytopenia syndrome after Ad26.COV2.S compared with BNT162b2. Although rare, the observed risks after adenovirus based vaccines should be considered when planning further immunisation campaigns and future vaccine development.


Assuntos
Vacinas contra COVID-19 , Trombocitopenia , Tromboembolia , Trombose , Adolescente , Adulto , Humanos , Ad26COVS1/efeitos adversos , Vacina BNT162/efeitos adversos , Estudos de Coortes , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Trombocitopenia/epidemiologia , Tromboembolia/epidemiologia , Trombose/epidemiologia , Trombose Venosa/epidemiologia
2.
Semin Hematol ; 59(2): 108-114, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512899

RESUMO

In hundreds of patients worldwide, vaccination against COVID-19 with adenovirus vector vaccines (ChAdOx1 nCoV-19; Ad26.COV2.S) triggered platelet-activating anti-platelet factor 4 (PF4) antibodies inducing vaccine-induced immune thrombotic thrombocytopenia (VITT). In most VITT patients, platelet-activating anti-PF4-antibodies are transient and the disorder is discrete and non-recurring. However, in some patients platelet-activating antibodies persist, associated with recurrent thrombocytopenia and sometimes with relapse of thrombosis despite therapeutic-dose anticoagulation. Anti-PF4 IgG antibodies measured by enzyme-immunoassay (EIA) are usually detectable for longer than platelet-activating antibodies in functional assays, but duration of detectability is highly assay-dependent. As more than 1 vaccination dose against COVID-19 is required to achieve sufficient protection, at least 69 VITT patients have undergone subsequent vaccination with an mRNA vaccine, with no relevant subsequent increase in anti-PF4 antibody titers, thrombocytopenia, or thrombotic complications. Also, re-exposure to adenoviral vector-based vaccines in 5 VITT patients was not associated with adverse reactions. Although data are limited, vaccination against influenza also appears to be safe. SARS-CoV-2 infection reported in 1 patient with preceding VITT did not influence anti-PF4 antibody levels. We discuss how these temporal characteristics of VITT provide insights into pathogenesis.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombose , Ad26COVS1/efeitos adversos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19/efeitos adversos , Humanos , Fator Plaquetário 4/efeitos adversos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , SARS-CoV-2 , Trombose/induzido quimicamente , Trombose/complicações
3.
Semin Hematol ; 59(2): 72-75, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35512903

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a life-threatening syndrome of aggressive thrombosis, often profound thrombocytopenia, and frequently overt disseminated intravascular coagulation. It has been associated with 2 adenovirus vector COVID-19 vaccines: ChAdOx1 nCoV-19 (AstraZeneca) and Ad26.COV2.S (Janssen). Unlike the myriad of other conditions that cause thrombosis and thrombocytopenia, VITT has an important distinguishing feature: affected individuals have platelet activating anti-PF4 antibodies that appear in a predictable time frame following vaccination. The reported incidence of VITT differs between jurisdictions; it is dependent on accurate ascertainment of cases and accurate estimates of the size of the vaccinated population. The incidence ranges from 1 case per 26,500 to 127,3000 first doses of ChAdOx1 nCoV-19 administered. It is estimated at 1 case per 518,181 second doses of ChAdOx1 nCoV-19 administered, and 1 case per 263,000 Ad26.COV2.S doses administered. There are no clear risk factors for VITT, including sex, age, or comorbidities. VITT is a rare event, but its considerable morbidity and mortality merit ongoing pharmacovigilance, and accurate case ascertainment.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Púrpura Trombocitopênica Idiopática , Trombose , Ad26COVS1/efeitos adversos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , ChAdOx1 nCoV-19/efeitos adversos , Humanos , Púrpura Trombocitopênica Idiopática/induzido quimicamente , Púrpura Trombocitopênica Idiopática/epidemiologia , Trombose/induzido quimicamente , Trombose/epidemiologia
4.
Hum Vaccin Immunother ; 18(5): 2050654, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35412949

RESUMO

Cases that experienced COVID-19 postvaccination-related thrombosis have been reported after the first dose of ChAdOx1 nCov-19 (Vaxzevria, AstraZeneca) or Ad26.COV2.S (Johnson & Johnson/Janssen) vaccine. These rare thrombotic events were observed within the expected vaccine-induced seroconversion period and could be attributed to platelet-activating (auto)antibodies against platelet factor 4 (PF4). Newly, vaccine-induced, cross-reactive anti-PF4 antibodies could explain this observation. An in-silico analysis using the Basic Local Alignment Search Tool was used to identify sequence similarity between PF4 and antigens contained in or encoded by ChAdOx1 nCov-19 or Ad26.COV2.S vaccines. Only one sequence within the signaling peptide of the SARS-CoV-2 spike protein exhibited a high percent identity (85.71%) with PF4. This sequence overlaps with a proven immunogenic peptide recognized from convalescent COVID-19 sera and could be responsible for the formation of platelet-activating immunocomplexes in susceptible patients. Manipulation of the immunogenicity of this particular sequence within the encoded SARS-CoV-2 spike protein signaling peptide may eliminate this iatrogenic severe adverse effect.


Assuntos
COVID-19 , Púrpura Trombocitopênica Idiopática , Trombocitopenia , Trombose , Ad26COVS1/efeitos adversos , COVID-19/prevenção & controle , ChAdOx1 nCoV-19/efeitos adversos , Humanos , Fator Plaquetário 4 , Púrpura Trombocitopênica Idiopática/induzido quimicamente , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trombose/induzido quimicamente
5.
MMWR Morb Mortal Wkly Rep ; 71(3): 90-95, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35051137

RESUMO

On February 27, 2021, the Food and Drug Administration (FDA) issued an Emergency Use Authorization (EUA) for the adenovirus-vectored COVID-19 vaccine (Janssen Biotech, Inc., a Janssen Pharmaceutical company, Johnson & Johnson), and on February 28, 2021, the Advisory Committee on Immunization Practices (ACIP) issued an interim recommendation for its use as a single-dose primary vaccination in persons aged ≥18 years (1,2). On April 13, 2021, CDC and FDA recommended a pause in the use of Janssen COVID-19 vaccine after reports of thrombosis with thrombocytopenia syndrome (TTS), a rare condition characterized by low platelets and thrombosis, including at unusual sites such as the cerebral venous sinus (cerebral venous sinus thrombosis [CVST]), after receipt of the vaccine.* ACIP rapidly convened two emergency meetings to review reported cases of TTS, and 10 days after the pause commenced, ACIP reaffirmed its interim recommendation for use of the Janssen COVID-19 vaccine in persons aged ≥18 years, but included a warning regarding rare clotting events after vaccination, primarily among women aged 18-49 years (3). In July, after review of an updated benefit-risk assessment accounting for risks of Guillain-Barré syndrome (GBS) and TTS, ACIP concluded that benefits of vaccination with Janssen COVID-19 vaccine outweighed risks. Through ongoing safety surveillance and review of reports from the Vaccine Adverse Event Reporting System (VAERS), additional cases of TTS after receipt of Janssen COVID-19 vaccine, including deaths, were identified. On December 16, 2021, ACIP held an emergency meeting to review updated data on TTS and an updated benefit-risk assessment. At that meeting, ACIP made a recommendation for preferential use of mRNA COVID-19 vaccines over the Janssen COVID-19 vaccine, including both primary and booster doses administered to prevent COVID-19, for all persons aged ≥18 years. The Janssen COVID-19 vaccine may be considered in some situations, including for persons with a contraindication to receipt of mRNA COVID-19 vaccines.


Assuntos
Ad26COVS1/efeitos adversos , Comitês Consultivos , Vacinas contra COVID-19/uso terapêutico , Trombocitopenia/induzido quimicamente , Vacinação/normas , Adulto , Sistemas de Notificação de Reações Adversas a Medicamentos , Idoso , COVID-19/prevenção & controle , Centers for Disease Control and Prevention, U.S. , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , SARS-CoV-2/imunologia , Estados Unidos/epidemiologia
6.
Ann Intern Med ; 175(4): 513-522, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038274

RESUMO

BACKGROUND: Thrombosis with thrombocytopenia syndrome (TTS) is a potentially life-threatening condition associated with adenoviral-vectored COVID-19 vaccination. It presents similarly to spontaneous heparin-induced thrombocytopenia. Twelve cases of cerebral venous sinus thrombosis after vaccination with the Ad26.COV2.S COVID-19 vaccine (Janssen/Johnson & Johnson) have previously been described. OBJECTIVE: To describe surveillance data and reporting rates of all reported TTS cases after COVID-19 vaccination in the United States. DESIGN: Case series. SETTING: United States. PATIENTS: Case patients receiving a COVID-19 vaccine from 14 December 2020 through 31 August 2021 with thrombocytopenia and thrombosis (excluding isolated ischemic stroke or myocardial infarction) reported to the Vaccine Adverse Event Reporting System. If thrombosis was only in an extremity vein or pulmonary embolism, a positive enzyme-linked immunosorbent assay for antiplatelet factor 4 antibodies or functional heparin-induced thrombocytopenia platelet test result was required. MEASUREMENTS: Reporting rates (cases per million vaccine doses) and descriptive epidemiology. RESULTS: A total of 57 TTS cases were confirmed after vaccination with Ad26.COV2.S (n = 54) or a messenger RNA (mRNA)-based COVID-19 vaccine (n = 3). Reporting rates for TTS were 3.83 per million vaccine doses (Ad26.COV2.S) and 0.00855 per million vaccine doses (mRNA-based COVID-19 vaccines). The median age of patients with TTS after Ad26.COV2.S vaccination was 44.5 years (range, 18 to 70 years), and 69% of patients were women. Of the TTS cases after mRNA-based COVID-19 vaccination, 2 occurred in men older than 50 years and 1 in a woman aged 50 to 59 years. All cases after Ad26.COV2.S vaccination involved hospitalization, including 36 (67%) with intensive care unit admission. Outcomes of hospitalizations after Ad26.COV2.S vaccination included death (15%), discharge to postacute care (17%), and discharge home (68%). LIMITATIONS: Underreporting and incomplete case follow-up. CONCLUSION: Thrombosis with thrombocytopenia syndrome is a rare but serious adverse event associated with Ad26.COV2.S vaccination. The different demographic characteristics of the 3 cases reported after mRNA-based COVID-19 vaccines and the much lower reporting rate suggest that these cases represent a background rate. PRIMARY FUNDING SOURCE: Centers for Disease Control and Prevention.


Assuntos
COVID-19 , Trombocitopenia , Trombose , Vacinas , Ad26COVS1/efeitos adversos , Adolescente , Adulto , Idoso , COVID-19/epidemiologia , Vacinas contra COVID-19/efeitos adversos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro , Síndrome , Trombocitopenia/induzido quimicamente , Trombocitopenia/epidemiologia , Trombose/induzido quimicamente , Trombose/etiologia , Estados Unidos/epidemiologia , Vacinação/efeitos adversos , Vacinas/efeitos adversos , Adulto Jovem
7.
J Clin Apher ; 37(1): 117-121, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34672380

RESUMO

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a newly described hematologic disorder, which presents as acute thrombocytopenia and thrombosis after administration of the ChAdOx1 nCov-19 (AstraZeneca) and Ad26.COV2.S (Johnson & Johnson) adenovirus-based vaccines against COVID-19. Due to positive assays for antibodies against platelet factor 4 (PF4), VITT is managed similarly to autoimmune heparin-induced thrombocytopenia (HIT) with intravenous immunoglobulin (IVIG) and non-heparin anticoagulation. We describe a case of VITT in a 50-year-old man with antecedent alcoholic cirrhosis who presented with platelets of 7 × 103 /µL and portal vein thrombosis 21 days following administration of the Ad26.COV2.S COVID-19 vaccine. The patient developed progressive thrombosis and persistent severe thrombocytopenia despite IVIG, rituximab and high-dose steroids and had persistent anti-PF4 antibodies over 30 days after his initial presentation. As such, delayed therapeutic plasma exchange (TPE) was pursued on day 32 of admission as salvage therapy, with a sustained improvement in his platelet count. Our case serves as proof-of-concept of the efficacy of TPE in VITT.


Assuntos
Ad26COVS1/efeitos adversos , Troca Plasmática/métodos , Púrpura Trombocitopênica Idiopática/terapia , Vacinação/efeitos adversos , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Fator Plaquetário 4/imunologia , Púrpura Trombocitopênica Idiopática/etiologia
8.
J Cardiovasc Med (Hagerstown) ; 23(2): 71-74, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34366403

RESUMO

Currently, the world is coping with the COVID-19 pandemic with a few vaccines. So far, the European Medicine Agency has approved four of them. However, following widespread vaccination with the recombinant adenoviral vector-based Oxford-AstraZeneca vaccine, available only in the United Kingdom and Europe, many concerns have emerged, especially the report of several cases of the otherwise rare cerebral sinus vein thrombosis and splanchnic vein thrombosis. The onset of thrombosis particularly at these unusual sites, about 5--14 days after vaccination, along with thrombocytopenia and other specific blood test abnormalities, are the main features of the vaccine side effects. The acronym vaccine-induced prothrombotic immune thrombocytopenia (VIPIT) has been coined to name this new condition, with the aim of highlighting the difference from the classic heparin-induced thrombocytopenia (HIT). VIPIT seems to primarily affect young to middle-aged women. For this reason, the vaccine administration has been stopped or limited in a few European countries. Coagulopathy induced by the Oxford-AstraZeneca vaccine (and probably by Janssen/Johnson & Johnson vaccine as well in the USA) is likely related to the use of recombinant vector DNA adenovirus, as experimentally proven in animal models. Conversely, Pfizer and Moderna vaccines use mRNA vectors. All vaccine-induced thrombotic events should be treated with a nonheparin anticoagulant. As the condition has some similarities with HIT, patients should not receive any heparin or platelet transfusion, as these treatments may potentially worsen the clinical course. Aspirin has limited rational use in this setting and is not currently recommended. Intravenous immunoglobulins may represent another potential treatment, but, most importantly, clinicians need to be aware of this new unusual postvaccination syndrome.


Assuntos
ChAdOx1 nCoV-19/efeitos adversos , Trombose Intracraniana/etiologia , Púrpura Trombocitopênica Idiopática/etiologia , Ad26COVS1/efeitos adversos , Adenoviridae/imunologia , Humanos
9.
Clin Exp Dermatol ; 47(1): 161-163, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34291477

RESUMO

Evidence is accumulating that COVID-19 vaccines might induce or exacerbate autoimmune rheumatic diseases. The currently available COVID-19 vaccines include mRNA and recombinant adenoviral vector vaccines, both encoding SARS-CoV-2 spike protein production as the primary target for neutralizing antibodies. We report a case of subacute cutaneous lupus erythematosus (SCLE) following mRNA vaccination with the Pfizer mRNA vaccine BNT162b2, and summarize the current literature on CLE occurring after COVID-19 vaccination.


Assuntos
Vacina BNT162/efeitos adversos , COVID-19/prevenção & controle , Toxidermias/etiologia , Lúpus Eritematoso Cutâneo/induzido quimicamente , Ad26COVS1/efeitos adversos , Idoso , ChAdOx1 nCoV-19/efeitos adversos , Humanos , Masculino , SARS-CoV-2 , Vacinação/efeitos adversos
10.
Clin Infect Dis ; 75(1): e857-e864, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34893824

RESUMO

BACKGROUND: People living with HIV (PLWH) have been reported to have a higher risk of more severe COVID-19 disease and death. We assessed the ability of the Ad26.CoV2.S vaccine to elicit neutralizing activity against the Delta variant in PLWH relative to HIV-negative individuals. We also examined effects of HIV status and suppression on Delta neutralization response in SARS-CoV-2-infected unvaccinated participants. METHODS: We enrolled participants who were vaccinated through the SISONKE South African clinical trial of the Ad26.CoV2.S vaccine in healthcare workers (HCWs). PLWH in this group had well-controlled HIV infection. We also enrolled unvaccinated participants previously infected with SARS-CoV-2. Neutralization capacity was assessed by a live virus neutralization assay of the Delta variant. RESULTS: Most Ad26.CoV2.S vaccinated HCWs were previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared with the infected-only group and 26-fold higher relative to the vaccinated-only group. No decrease in Delta variant neutralization was observed in PLWH relative to HIV-negative participants. In contrast, SARS-CoV-2-infected, unvaccinated PLWH showed 7-fold lower neutralization and a higher frequency of nonresponders, with the highest frequency of nonresponders in people with HIV viremia. Vaccinated-only participants showed low neutralization capacity. CONCLUSIONS: The neutralization response of the Delta variant following Ad26.CoV2.S vaccination in PLWH with well-controlled HIV was not inferior to HIV-negative participants, irrespective of past SARS-CoV-2 infection. In SARS-CoV-2-infected and nonvaccinated participants, HIV infection reduced the neutralization response to SARS-CoV-2, with the strongest reduction in HIV viremic individuals.


Assuntos
Ad26COVS1 , COVID-19 , Infecções por HIV , Ad26COVS1/administração & dosagem , Ad26COVS1/efeitos adversos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , HIV , Infecções por HIV/complicações , Humanos , SARS-CoV-2 , Vacinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA